

"Changing Ocean" 2012 expedition and OA impacts on cold-water corals and maerl

J Murray Roberts 23 July 2013

Name	Institution	Role/expertise
Science		
1. Alt, Claudia	National Oceanography Centre, UK	Benthic ecology and coring
2. Attard, Karl	University of Southern Denmark	Eddy correlation lander
3. Birchenough, Silvana	Cefas, UK	Watch Leader, SPI camera
Boyle (Milligan), Rosanna	University of Glasgow, UK	Deep-sea fish
5. Büscher, Janina	GEOMAR, Germany	OA and coral biology
6. Byrne, Rowan	Heriot-Watt University, UK	OA and coral biology
7. Cook, Geoffrey	Fish & Wildlife Service, USA	Microbiology & genetics
8. Cotton, Anne	University of Hull, UK	Microbiology
9. Donohue, Penelope	University of Glasgow, UK	OA and coral biology
10. Findlay, Helen	Plymouth Marine Laboratory, UK	Carbonate chemistry
11. Fitzek, Sarah	Heriot-Watt University, UK	OA and coral biology
12. Hennige, Sebastian	Heriot-Watt University, UK	Watch Leader, OA and coral biology
13. Huvenne, Veerle	National Oceanography Centre, UK	Mapping and log keeping
14. Kazanidis, Georgios	University of Aberdeen, UK	Deep-sea sponge biology
15. Lyman, Nigel	Cefas, UK	SPI camera
16. Moreno-Navas, Juan	Heriot-Watt University, UK	Hydrography, GIS and OFOP logging
 Orejas, Covadonga 	Instituto Español de Oceanografía, Spain	OA and coral biology
18. Polanski, John	University of Aberdeen, UK	Deep-sea sponge biology
19. Roberts, J Murray	Heriot-Watt University, UK	Principal Scientist
20. Wicks, Laura	Heriot-Watt University, UK	OA and coral biology
21. Victoreo Gonzalez, Lisette	Heriot-Watt University, UK	OA and coral biology

Living With Environmental Change

changingoceans2012.blogspot.co.uk

Living With Enviro

NATURAL

ENVIRONMENT

RESEARCH COUNCIL

defra

Changing Oceans · Stats › Overview

16 Jul 2013 12:00 - 23 Jul 2013 11:00

Pageviews today	2
Pageviews yesterday	26
Pageviews last month	486
Pageviews all time history	33,621

Don't track your own pageviews

Posts

M	ore»	

More»

Entry	Pageviews
Day 28: They think its all overit i 15 Jun 2012	2
Sgoil Lionacleit's blog 25 May 2012	2
Day 5: Feeding Corals 23 May 2012	2
Day 24: Mapping the cold-water co 11 Jun 2012	1
Day 7: Bye bye Mingulay 25 May 2012	1

Entry	Pageviews
http://r-e-f-e-r-e-r.com/changingoc	8
http://www.google.com/search	3
http://changingoceans2012.blogsp	2

Audience

Traffic Sources

More»

JC073 ship-board treatments

- Short term
- 9 °C, 380ppm CO₂
- 9 °C, 750ppm CO₂
- 12 °C, 380ppm CO₂
- 12 °C, 750ppm CO₂
- Measurements
 - Respiration
 - Alkalinity anomaly
 - Energy budget
- Lophelia (orange and white)
- *Madrepora* (orange and white)
 - Different sites
 - Different depths

One year later... Examples of initial findings

- 1. Environmental context: high-resolution mapping
- 2. Environmental context: natural carbonate chemistry variability
- 3. Ecosystem function: *in situ* O_2 flux
- 4. Ecosystem function: redox layer imaging
- 5. Unexpected discovery from Hebrides Terrace Seamount

Data: Veerle Huvenne (NOC)

UK Ocean Acidification Research Programme Benthic Acidification

ROV-based microbathymetry: Mingulay

Data: Veerle Huvenne (NOC)

ROV-based microbathymetry: Mingulay

Scanfish data

Dmitry Aleynik & Mark Inall (SAMS) Murray Roberts (HWU) RRS *Discovery* 340b (Oceans 2025)

Findlay et al. (in press 2013) Global Change Biology

defra

NATURAL

FARCH COUNCI

iving With E

- Corals experience 0.1 pH unit change over one semi-diurnal tidal cycle (14 h)
- *p*CO₂ shifted by >60 μatm, equivalent to a ca. 25 year jump into the future, with respect to atmospheric *p*CO₂

Water column profile through the tidal cycle of (a) normalized dissolved inorganic carbon (nC_T , µmol kg⁻¹), (b) normalized total alkalinity (nA_T , µmol kg⁻¹), (c) pH (total scale) and (d) aragonite saturation state ($\Omega_{aragonite}$). Black triangle, time low tide. White triangle, time high tide

Deployment 2: Rockall (on-mound)

Cold-water coral reefs as hotspots for carbon turnover

Lophelia pertusa and adjacent habitats

Areas sampled:

- Mingulay Reef complex (~200 m)
- Logachev Mounds, Rockall Bank (~600m)

Surface fauna (Lanice conchilega) sediment water interface

> aRPD-apparent Redox **Discontinuity layer**

> > Deep burrowing

i) to characterise habitats adjoining coldwater coral reefs using a Sediment Profile Imagery (SPI) camera ii) record epifauna occurrence, distribution patterns and species association: combination of scales (AVA award to combine SPI and video camera information)

Birchenough et al. (*in prep*).

Summary of results

- **Depth**=200-250 m
- Soft muds and stony areas (closer to the reef areas)
- Small polychaete tubes
- Redox area=2-4 cm²
- Fauna : Crinoids, sponges-*Mycale macilenta* and soft corals

- **Depth**=250-300 m
- Soft muds and stony
- areas (closer to the reef areas)
- Lanice conchilega tube mats
- Redox area=4-6 cm²
- Fauna: Nephrops (?), small polychaete, actinia and soft corals

ENERGY & CLIMATECHANG

- **Depth**=500-1000 m
- Coral fragmets, rubble and attached fauna
- Redox area=N/A
- Logachev mounds • Fauna: sponges,
 - squat lobsters,
 - corals (*Madrepora* oculata)

Birchenough et al. (*in prep*).

reef

Banana

Hebrides Terrace Seamount

- ~1,400 m high rising from depths of ~2400 m
- An underwater volcano with a flat top, known as an ocean guyot
- Beinn Nevis 1,344 m
- Never surveyed before with ROV

'Coral Gardens' at low Ω_{aragonite}

- Aragonite saturation dropped from 1.33-1.38 at the seamount summit to as low as 1.11 at a depth of 1930 m
- 'Coral garden' habitats structured by *Solenosmilia variabilis*, not *Lophelia pertusa*
- How is *S. variabilis* adapted to these low saturation states?

SEE POSTER 10B

Impact of warming and ocean acidification upon the growth and physiology of the cold-water coral *Lophelia pertusa*

> Seb Hennige, Laura Wicks, Nick Kamenos, Murray Roberts

- Short-term experiments (D367; JC073)
- Long-term experiment (HWU)
- Growth & O2 consumption assessed
- Biomineralisation analysis now underway

LONG-TERM INCUBATIONS : BIOMINERALISATION

- New polyps in high CO₂ treatment longer and thinner than polyps in control treatments
- Energetic/structural strength implications?
- Using SEM, RAMAN spectroscopy, and Electron Back Scatter Diffusion (EBSD) to investigate this

Lophelia pertusa after 1-year experimental incubation
(a) Measurements of height and width of a new polyp
(b) new polyp growth on a coral from 9°C 380 ppm
(c) new polyp growth on a coral incubated in 9°C 1000 ppm

Coralline algae show variable responses to ocean acidification and warming

Contributors: Nick Kamenos, Heidi Burdett, Penelope Donohue, Piero Calosi, Helen Findlay, Elena Aloisio, Charlotte Longbone, Jonathan Dunn, Angela Hatton, Murray Roberts, Maggie Cusack & Steve Widdicombe

Coralline algal bed in Scotland

Outcomes

Epithelial damage

Low, abrupt pH

Scale bar = 1 um

Burdett et al. 2012, Marine Biology Research

NATURAL

ENVIRONMENT

RESEARCH COUNCIL

iving With E

Algal hardness

• Hardness of thalli after 9-month incubation (awaiting 12 month data)

Algal structure

- Under high pCO₂ maerl is less hard / more bicarbonate and prone to breaking
- Broken maerl has lower heterogeneity

Whole maerl thallus

Broken maerl thallus

Conclusions

- JC073 data analysis on-going (incl. added-value)
- First results reinforce dynamic CWC environment + v. high rates oxygen uptake
- JC073 habitat/biodiversity data archive (new 'Watt PhD' in collaboration with NOC). Others planned
- Coral & maerl experiments being concluded now. Both show trends in biomineralisation response

Many thanks to

- UKOA, NERC, DECC, Defra & JNCC for funding
- Marine Alliance for Science & Technology Scotland
- Heriot-Watt's Environment & Climate Change theme
- Captain Bill Richardson & crew of RRS James Cook 073
- Science Crew
- ROV & Technical Crew

