CARBON CONCENTRATING MECHANISMS & CO₂

ROS RICKABY & RENEE LEE UNIVERSITY OF OXFORD

CARBON CONCENTRATING MECHANISMS (CCMs)

STRAIN SPECIFIC RESPONSES TO pCO₂

Riebesell et al. (2000)

Iglesias-Rodriguez et al. (2008)

Study	Strain	Growth	1	PIC producti	ion	POC produc	ction	PIC:PO	C ratio
Feng et <i>al</i> . 2008	CCMP371 ^c]				
Iglesias-Rodriguez et <i>al</i> . 2008	NZEH _R								
Langer et al. 2009	RCC1212 _B O]				
	RCC1216 _R O]				_
	RCC1238 _A C		_						
	RCC1256 _A C		_		$\hat{}$		$\hat{}$		
Riebesell et al. 2000	PLYB92/11 _A C]				_
Sciandra et al. 2003	TW1					P.			
Shi et <i>al.</i> 2009	NZEH _R								
This study	RCC1256 _A C		_]				_
	NZEH _R		1]				

Hoppe et al. (2011)

CCMs IN COCCOLITHOPHORES

Not as well characterised as cyanobacteria or Chlamydomonas reinhardtii

CARBONIC ANHYDRASE: AN INTRODUCTION

- Several classes of CA a result of convergent evolution
- Localised to various subcellular compartments
- Metalloenzyme with diverse physiological roles
- Fundamental role in carbon concentration

δ-CARBONIC ANHYDRASE

- Least studied carbonic anhydrase
- Found predominantly in marine phytoplankton
- δ-CA is induced by low CO₂
- In vitro enzymatic characterization has been unsuccessful to date (Roberts et al. 1997; Soto et al. 2006; Lapointe et al. 2008)

Lane & Morel (2000)

	δ-CA	is	a fu	une	ctic	ona	ıl c	arl	bor	nic	ar	hydrase	9
	0.08												
	0.07 -											Bovine CA	
348)	0.06	E	ster	ase	act	tivity	/			K			
Absorbance (OD ₃₄₈)	0.05								×		I	δ-СΑ	
ance	0.04						*	^	I.	1	_ T	(TWCA1)	_
sorb	0.03					*	<u>.</u>	<u> </u>	_T				_
Ą	0.02			×	4	•							
	0.01	_	X	•		_	-	-	-	<u>+</u>	•	Blank	
	0		•	•		-	_	-	_	_			
	0	1	2	3	4	5	6	7	8	9	10		, <u>, , , , , , , , , , , , , , , , , , </u>
					Tin	ne (m	iin)						

By overexpressing TWCA1 in a pTWIN2 expression vector system (& subsequent purification), we demonstrated that this protein is a catalytically active δ -CA with both esterase & CO₂ hydration activity

Sample	CO ₂ hydration Specific activity (WAU mg ⁻¹)	Esterase activity Specific activity (U mg ⁻¹)		
TWCA1	425 ± 9 (4)	635 ± 45 (4)		
Bovine CA	1970 ± 98 (4)	1090 ± 63 (4)		
Boiled TWCA1	0	0		

Manuscript in revision, Journal of Phycology

δ-CARBONIC ANHYDRASE

Different CA expression in various strains of *E. huxleyi* = **difference in CCM efficiency** & adaptation to an ever-changing CO₂ environment??

By overexpressing TWCA1 in a pTWIN2 expression vector system (& subsequent purification), we demonstrated that this protein is a catalytically active δ -CA with both esterase & CO₂ hydration activity

Sample	CO ₂ hydration Specific activity (WAU mg ⁻¹)	Esterase activity Specific activity (U mg ⁻¹)		
TWCA1	425 ± 9 (4)	635 ± 45 (4)		
Bovine CA	1970 ± 98 (4)	1090 ± 63 (4)		
Boiled TWCA1	0	0		

Manuscript in revision, Journal of Phycology

PYRENOIDS: AN INTRODUCTION

 Present in nearly all unicellular algae & many macroscopic species (both freshwater & marine)

A protein complex, located in the stroma of the chloroplast

Often surrounded by a sheath of carbohydrate in green algae

Until the 1980s, pyrenoid thought to be site of starch synthesis, which was discredited after mutant studies

- Holdsworth (1971) successfully isolated pyrenoids from green algae & showed that it was composed of up to 90% Rubisco
- Pyrenoid acts as a diffusion barrier, minimising leakage of CO₂ from the chloroplast, ensuring CO₂ saturation of Rubisco
- C. reinhardtii insertional mutants (lacking a pyrenoid) have been shown to grow poorly on low levels of CO₂ (Ma et al. 2011)

PYRENOIDS: PRESENT STUDY

Transmission electron microscopy (TEM) of Helicosphaera carteri

In situ localisation of Rubisco

- In Chlamydomonas, the amount and localisation of Rubisco in the stroma varies with growth conditions (Borkhsenious et al. 1998) & strains (Morita et al. 1999)
- Is there a variation between closely related haptophytes or strains of E. huxleyi?

QUESTIONS:

- Distribution of pyrenoids across various species/strains of haptophytes
- Does the pyrenoid ultrastructure (thylakoid membrane) vary between species/strains and to what extent?

Morita et al. (1999)

5. Cd. macrostellata

6. Cd. radiata

7. Cd. Insignis

8. Cd. bipapillata

Strains	CO ₂ condition	O_2 evolution rate (μ mol $O_2 \cdot mg^{-1}$ Chl $\cdot h^{-1}$)	$K_{0.5}(CO_2)$ (μM)	Ci pool (µM)
Cd. mutabilis UTEX 578	L	122.7 ± 33.2	9.7 ± 0.9	252 ± 57
	H	124.3 ± 35.5	7.8 ± 1.5	_
Cd. radiata UTEX 966	L	92.8 ± 18.9	2.9 ± 1.7	231 ± 91
	H	107.0 ± 16.3	3.4 ± 0.3	200
Cd. augustae UTEX 1969	L	132.3 ± 31.4	0.1 ± 0.02	1-
	H	129.0 ± 32.7	0.2 ± 0.2	_
Cd. macrostellata SAG 72.81	L	110.8 ± 32.2	1.2 ± 0.1	-
	H	109.4 ± 32.0	1.0 ± 0.1	-
Cd. bipapillata SAG 11-47	L	168.0 ± 26.2	11.0 ± 3.5	24 ± 8
	H	136.7 ± 44.5	19.8 ± 6.5	_
Cr. insignis NIES-447	L	76.7 ± 8.1	2.2 ± 0.5	31 ± 11
	H	80.6 ± 27.8	17.8 ± 1.8	_

COPY NUMBERS

- Various diseases (e.g. cancer), pathogenicity/toxicity & tolerance in a variety of environmental conditions are caused by gene copy number variants
- High transcript levels may be attributed to the presence of several gene copies in the genome

AN EXAMPLE:

Genes involved in conferring metal tolerance are shown to have a higher copy number (ZIP9, HMA4) in *A. halleri* (metal accumulator) vs. *A. thaliana* (non-accumulator) using DNA Gel-Blot Analysis

Different CA copy number in various strains of *E. huxleyi* = **difference in CCM efficiency** ??

SUMMARY & FUTURE WORK

- Improve knowledge of cell physiology (CCM & photosynthesis)
- Explain the variation among strains of Emiliania huxleyi
- Understand how species adapt to an ever-changing marine environment (OA)